

Photomultiplier Tube Modules STM1/STM2/STM3/STD

2023 V1 For customized projects please Contact us: info@simtrum.com

Model Guide

Selection Guide for Photon Counter and Light Detector

ltem	Product Name	Photocathode Area Shape	Photocathode Area Size	Wavelength (short)	Wavelength (long)	Peak Wavelength	Input Voltage	[Cathode] Luminous Sensitivity Typ.	Cathode Radiant Sensitivity	Maximum Linear Count Rate	Dark Count Typ.	Wight
STM1011	Photon Counter		Dia 25mm	— 290nm	650nm		+4.75~+5.25V	/	/	6×10 ⁶ (Before	aa 1	280g
STM2011	Photon Counter	Decent	Dia.25mm			400	+11.5~+12.5	/	/	(After correction)	80s	445g
STM2012	Photon Counting Detector	Round	Dia.22mm			4201111	+4.75~+5.25V	/	/	1x10 ⁷ (Before Calibration) ,4x10 ⁷ (After correction)	/	220g
STM2021	Linkt Datastas	Deced	Dia 00mm	000	050		±11.75~±12.25	00	100-100		/	000-
STM2031	Light Detector	Round	Dia.22mm	290nm	mnuca	420nm	+11.75~+12.25	90µA/Im	TUUMA/W		/	220g
STM2111-01	Direte metric Detector	0	0.04	165mm 900mm	250µA/lm 70mA/W	250µA/Im 70mA/W	250µA/Im 70mA/W			/	005 -	
STM2111-02	FIDIOMETIC Detector	Square	ox∠4mm	160mm	650nm	400mm	±11.5~±12.5	60µA/lm 25mA/W	vw	/	225g	

Selection Guide for $\boldsymbol{\beta}$ detector

ltem	Product Name	Effective Shape	Effective Aarea	Input Current	Input Voltage	Output Pulse Logic	Output Pulse Amplitude	Output Pulse Width	Observed Counting Rate	1 Hour Instability Typ.
SMM1111			Dia.10mm	70mA			5±0.5V		8.8-9k s-1	
SMM3013	β detector	Round	Dia.25mm	≤60mA(+12V); ≤10mA(-12V)	+11.5~ + 12.5V	TTL	5±0.2V	500±100ns	26.5-28k s-1	0.20%

Selection Guide for Scintillator Probe and Nal Scintillator Detector

ltem	Product Name	Photocatho de Area Shape	Photocatho de Area Size	Application voltage	Input Voltage	Interface Type	Energy Resolution	Applicable to The PMT	Output Signal Polarity	Output Signal Amplitude	Max Output Ssignal Amplitude
STM3111			Φ25×25mm		/			STN2013	/	/	/
STM3112	Scintillator Probe		Φ50×50	0~+1250V	/	BNC、SHV		STN4021	/	/	/
STM3113		Dound	Φ75×75		/]	<9 E0/	STN2032	/	/	/
STM3021		Round	Ф25×25mm	/		/	≥0.3%	/			
STM3022	Nal Scintillator Detector		Φ50×50	/	/+11.5~+12.5V	/		/	Negative	1V	6V
STM3023			Φ75×75	/		/		/			

Photon Counter – STM1011

The STM1011 photon counter is mainly used in biology, medicine, chemistry and other fields, mainly involving weak light detection, precision measurement.

It is mainly composed of photomultiplier tube, high voltage power supply module and signal forming circuit. Before leaving the factory, this product has been tested in all aspects, switch on the power supply, the output end and the counting unit can be connected to use. Product performance can be customized according to customer demand.

Specification

Paramater		Min.	Тур.	Max.	Unit
Input Voltage		4	4.75~+5.2	5	V
Max Input Current			60		mA
Effective Area			Ф25		mm
Spectral Range			nm		
Peak Wavelength				nm	
Output Pulse Logic			TTL		/
Output Pulse Amplitude ⁽¹⁾	2	2.5	/	V	
Pulse Pairs Resolving Time		ns			
Radiation Counting Sensitivity			s⁻¹•pW⁻¹		
Maximum Lingar Count Data ⁽²⁾		6×10 ⁶ (1	Before Calik	oration)	1
Maximum Linear Count Rate		20×10 ⁶	S		
Dark Count ⁽³⁾		/	80	200	s ⁻¹
Consistency ⁽⁴⁾		/	/	±10	%
8 Hour Instability ⁽⁵⁾		/	0.60%	3	%
Recommended Load Resistance	Э		50		Ω
Weight			280		g
	Temperature		+5~+40		°C
work Environment?	Humidity	/	/	90%RH	/
Storage Environment	Temperature		-20~+50		°C
	Humidity	/	/	93%RH	/
Test Ambient Temperature		25 °C			

Note:

(1) Load 50Ω

(2) After correction, it is obtained by STM1011 with the correction function of the northern night vision counter unit

(3) After 30 minutes of light avoidance, the room temperature was 25°C, the test was conducted for 300s, and the mean value was calculated

(4) The light source wavelength is between 400~500nm, and the detector output counting rate is about 15ks⁻¹.

(5) The detector output counting rate is about 30ks⁻¹

(6) No condensation.

Spectral Graph

Count Rate Correction Curve

Temperature

Dimension

Brown : Power input +5V Blue : Power ground BNC is the signal cable

(unit: mm, line length can be customized)

Photon Counter – STM2011

Photon counter is mainly used in biology, medicine, chemistry and other fields, mainly involving weak light detection, precision measurement.

The STM2011 photon counting detector is mainly composed of photomultiplier tube, high voltage power supply module and signal forming circuit. Before leaving the factory, this product has been tested in all aspects, switch on the power supply, the output end and the counting unit can be connected to use. Product performance can be customized according to customer demand.

Specification

Paramater		Min.	Тур.	Max.	Unit
Input Voltage		-	+11.5~+12.	5	V
Max Input Current			70		mA
Effective Area			Ф25		mm
Spectral Range			nm		
Peak Wavelength			nm		
Output Pulse Logic		TTL		/	
Output Pulse Amplitude ⁽¹⁾	2	2.5	/	V	
Pulse Pairs Resolving Time		ns			
Radiation Counting Sensitivity	400nm	4.5×10 ⁵			s⁻¹•pW⁻¹
Maximum Linger Count Date ⁽²⁾		6×10 ⁶ (Before Calil	oration)	1
		20×10 ⁶	5		
Dark Count ⁽³⁾		/	80	200	s ⁻¹
Consistency ⁽⁴⁾		/	/	±10	%
8 Hour Instability ⁽⁵⁾		/	0.60%	3	%
Recommended Load Resistanc	e		50		Ω
Weight			445		g
Morte En ironmant ⁽⁶⁾	Temperature		+5~+40		°C
	Humidity	/	/	90%RH	/
Storage Environment ⁽⁶⁾	Temperature		-20~+50		°C
	Humidity	/	/	93%RH	/
Test ambient temperature		25 ℃			

Note:

(1) Load 50Ω

(2) After correction, it is obtained by STM2011 with the correction function of the northern night vision counter unit.

(3) After 30 minutes of light avoidance, the room temperature was 25°C, the test was conducted for 300s, and the mean value was calculated.

(4) The light source wavelength is between 400~500nm, and the detector output counting rate is about 15ks⁻¹.

(5) The detector output counting rate is about 30ks⁻¹.

(6) No condensation.

Spectral Graph

Count Rate Correction Curve

(unit: mm, line length can be customized)

Photon Counting Detector – STM2012

The STM2012 photon counting detector is a high sensitivity photon technology detector which is composed of head-on photomultiplier, high voltage power supply module and comparative forming circuit. Before the product leaves the factory, the parameter points has been preset as the optimal value, the user only needs to switch on the power supply, the output terminal and the counter can be used.

Specification

Parama	Paramater				Max.	Unit	
Input Voltage			-	-4.75~+5.2	5	V	
Max Input Current				100		mA	
Effective Area					mm		
Spectral Range		290-650		nm			
Peak Wavelength		420		nm			
Output Pulse Logic		+TTL		/			
Output Pulse Amplitude ⁽¹⁾				2.2	2.5	V	
Sensitivity of Counting	400nm		4.5×10 ⁵			s ⁻¹ •pW ⁻¹	
			1.0×10 ⁷	Before Cal	ibration)	-1	
Maximum Linear Count Ra	Maximum Linear Count Rate ⁽²⁾			4.0×10 ⁷ (After Correction)			
Dark Noise ⁽³⁾				100	200	s ⁻¹	
8 Hour Instability ⁽⁴⁾			1%			%	
Pulse Pair Resolution Time	Э		17			ns	
Recommended Load Resi	stance		50			Ω	
Weight				220		g	
	Temperature			+5~+40		°C	
VVORK Environment	Humidity	Max.		90%RH		/	
Otorogo Emiroprost	Temperature		-20~+50			°C	
Storage Environment	Humidity Max.		93%RH			/	
Test Ambient Temperature	9		25 ℃				

Note:

(1) Load 50Ω

(2) Random pulse; STM2012 income before correction; After correction, it is obtained by STM2012 cooperating with the correction function of counter unit STM4011

(3) Test after 30min of light avoidance

(4) The detector output counting rate is about 30k/s.

Spectral Graph

Count Rate Correction Curve

Graph of dark counting rate with temperature

Dimension

Light Detector – STM2021

The STM2021 light detector is composed of head-on photomultiplier tube, power supply circuit and amplifier circuit.

The current signal output by the photomultiplier tube is changed into a voltage output signal after I-V amplification. The gain of the light detector can be controlled by resistance adjustment or voltage adjustment.

Specification

Parama	ater		Description/Value	Unit		
Input Voltage			±11.75~±12.25	V		
Max Input Current			150	mA		
Effective Area			Ф22	mm		
Spectral Range			290-650	nm		
Peak Wavelength			420	nm		
Remommend Control Volta	age		+2~+4.5 (Impedance $10k\Omega$)	V		
Cathode Luminous Sensitiv	/ity ⁽¹⁾	90	µA/Im			
Cathode Radiant Sensitivity ⁽¹⁾			100	mA/W		
Anode Radiant Sensitivity ⁽¹⁾			2×10 ⁵	A/W		
Frequency Bandwidth			DC to 20	kHz		
Current to Voltage Convers	sion Fator		1	V/µA		
Max Linear Output Voltage) (1)		5	V		
Ripple Noise ⁽¹⁾⁽²⁾			4	mV		
Weight			220	g		
Work Environment	Temperature		+5~+40	°C		
	Humidity	Max.	90%RH	/		
Storogo Environmont	Temperature		-10~+50	°C		
Storage Environment	Humidity Max.		93%RH	/		
Test Ambient Temperature	;		25 ℃			

Note:

(1) Control voltage +4V.

(2) Load resistance $1M\Omega$, capacitance 22pF test.

Spectral Graph

Spectral Response Curve

The Gain Varies With the Control Voltage

Dimension

(unit: mm, line length can be customized)

Wiring and Gain Adjustment Method

Sensitivity(gain) adjustment method

Light Detector – STM2031

The STM2031 light detector is composed of head-on photomultiplier tube and power supply circuit.

The light detector directly outputs the current signal, and the gain can be controlled by resistance regulation or voltage regulation.

Specification

Param	ater		Description/Value	Unit	
Input Voltage			+11.75~+12.25	V	
Max Input Current			150	mA	
Effective Area			Ф22	mm	
Spectral Range			290-650	nm	
Peak Wavelength		420	nm		
Max.Average Output Sign	al Current	100	μA		
Remommend Control Volt	age	+2~+4.5(Impedance10k Ω)			
Cathode Luminous Sensitivity ⁽¹⁾			90	μA/Im	
Cathode Radiant Sensitivity ⁽¹⁾			100	mA/W	
Anode Radiant Sensitivity	(1)		2×10 ⁵ A		
Dark Current ⁽²⁾			10	nA	
Ripple Noise ^{(1) (3)}			4	mV	
Weight			220	g	
Work Environment	Temperature		+5~+40	°C	
WORK ENVIORIMENT	Humidity	Max.	90%RH	/	
Storogo Environment	Temperature		-10~+50	°C	
Storage Environment	Humidity Max.		93%RH	/	
Test ambient temperature			25 ℃		

Note:

(1) Control voltage +4V.

(2) Test after 30min of light avoidance.

(3) Load resistance $1M\Omega$, capacitance 22pF test

Spectral Graph

Dark Current Temperature Characteristic Curve

Output Current Linearity

The Gain Varies With the Control Voltage

Power Supply CI Signal Output (BNC) Ø22 EFFECTIVE AREA Voltage Input (Red) 0 + 12V 4-M3∓6 Ground (Black) O Ground 16.5±0. 53±0. 28±0.1 28.5 31.6 5.5±0.1 -core-red) 1±0.1 28±0.1 -voltage Ground(three-con 2-2-M375 35±0. 5±0.1 CI 68±0.1 O + 4V Adjust the sensitivity by adjusting the control voltage O Ground đ æ 12.5±0.1 Sensitivity(gain) adjustment method 0=0 æ 11±0.1

Wiring and Gain Adjustment Method

(unit: mm, line length can be customized)

Dimension

Photometric Detector – STM2111

The STM2111 photometric detector is mainly used in high energy physics, vitro diagnosis, precision measurement and other fields.

STM2111 photometric detector consists of side window photomultiplier tube, high voltage power supply module and amplifier circuit. The product has the advantages of simple and convenient, high reliability and high detection efficiency, and can be controlled by multiple ways (voltage regulation or resistance regulation) gain.

Specification

Param	Paramater			M2111-02	Unit		
Input Voltage			±11.5	~±12.5	V		
Max Input Current			1	00	mA		
Effective Area			8×	mm			
Spectral Range			165-900	160-650	nm		
Peak Wavelength of Radiant Sensitivity			420	400	nm		
Control Voltage		+2	~+5	V			
Cathode Luminous Sensitivity			250	60	µA/Im		
Cathode Radiant Sensitivity ⁽²⁾			70	25	mA/W		
Output Luminous Sensitivity ⁽¹⁾			1.2×10 ⁷	4×10 ⁶	V/lm		
Output Ardiant Sensitivity ⁽¹⁾⁽²⁾			3.5	1.7	V/nW		
Red and White Ratio			0.3	/	/		
IV Conversion Ratio			0.	0.05			
Maximum Linear Output V	oltage ⁽¹⁾			V			
Offset Voltage ⁽¹⁾⁽³⁾			±	±2			
Ripple Noise				4	mV		
Frequency Bandwidth			5	00	kHz		
Weight			22	25	g		
Mark Environment	Temperature		+5~	-+40	°C		
	Humidity	Max.	90%RH		/		
Storage Environment	Temperature		-20~	-20~+50			
Storage Environment	Humidity Max.		93%RH		/		
Test Ambient Temperatur	e			25 ℃			

Note:

(1) Control voltage: +4.0V.

(2) Wavelength of incident light: 400nm.

(3) Preheating time: 30min

Spectral Graph

Spectral Response Curve

The Gain Varies With the Control Voltage

Wiring and Gain Adjustment Method

Voltage Regulation Reference output should be suspended

Resistance Adjustment (Control input needs to be monitored)

Dimension

(unit: mm, line length can be customized)

β Detector – STM1111

The STM1111 β detector can measure low energy β ray, because of its excellent anti-interference ability, can be widely used in environ mental detection, precision measurement, scientific research and other fields. It is mainly composed of photo multiplier, high voltage power supply module, signal forming circuit and scintillator .

STM1111 β detector has the advantages of simplicity, high reliability and high detection efficiency. Before leaving the factory, it has been tested in all aspects, connected to the power supply, the output end can be used with the counting unit.

Specification

Paramater		Min.	Тур.	Max.	Unit		
Input Voltage		+	11.5~ + 12	.5	V		
Max Input Current		/	/	70	mA		
Effective Area			Ф10				
Output Pulse Logic			+TTL				
Output Pulse Amplitude			5±0.5				
Output Pulse Width				ns			
Background Counting Rate		/	/	3	s ⁻¹		
Observed Counting Rate ⁽¹)			s ⁻¹			
1 Hour Instability ⁽²⁾		/	0.2	0.4	%		
	Temperature	/	+5~+40	/	/		
Work Environment	Humidity	/	/	90%RH	/		
Otorean Environment	Temperature		-20~+50		°C		
Storage Environment	Humidity	/	/	93%RH	/		
Test Ambient Temperatur	e		25	°C	·		

Note:

Test with a 60µ Ci¹⁴C source 3mm from the detector.
1-hour instability test process: The count rate of detector acquisition was 10.0±0.5ks⁻¹, the collection time of each data was set as 4min, and 15 data were collected cumulatively (1 hour) for each set of data. The absolute value of deviation between each value of each set of data and the mean value was calculated, and the three groups were tested continuously (3 hours). The maximum value of the three groups was the 1-hour operating instability test value. The maximum value is the one-hour operating instability test value . The maximum value is the 1-hour operating instability test value.

Dimension

(unit: mm, line length can be customized)

β Detector – STM3013

The STM3013 β detector can measure low energy β ray, because of its excellent anti-interference ability, can be widely used in environmental detection, precision measurement, scientific research and other fields. It is mainly composed of end window photomultiplier, high voltage power supply module, signal forming circuit, scintillator and so on.

The product has the advantages of simplicity, high reliability and high detection efficiency. Before leaving the factory, it has been tested in all aspects, connected to the power supply, and the output end can be used with the counting unit.

Specification

Paran	nater		Min.	Тур.	Max.	Unit
Input Voltage			=	±11.5~±12.	5	V
Max Input Current			≤60(+12V); ≤10(-12V)			mA
Effective Area				Φ25		mm
Output Pulse Llogic				TTL		/
Output Pulse Amplitude				5±0.2		V
Output Pulse Width			500±100			ns
Background Counting Rate			/	/	3	s ⁻¹
Observed Counting Rate	(1)		26.5-28k			s ⁻¹
1 Hour Instability ⁽²⁾			/	0.2	0.4	%
Mark Environment	Temperature			+5~+40		°C
	Humidity	Max.		90%RH		/
Storogo Environment	Temperature		-20~+50			°C
Storage Environment	Humidity	Max.	93%RH			/
Test Ambient Temperature			25 ℃			

Note:

(1) Test with a 60μ Ci ¹⁴C source 3mm from the detector.

(2) 1-hour instability test process: The count rate of detector acquisition was 6.0±0.5ks, the collection time of each data was set to 4min, and 15 data were collected cumulatively (1 hour) for each set of data. The absolute value of deviation between each value of each set of data and the mean value was calculated. The three groups were tested continuously (3 hours), and the maximum value of the three groups was taken as the 1-hour operating instability test value.

Dimension

(unit: mm, line length can be customized)

Scintillator Probe – STM3111

The STM3111 scintillator probe is composed of Nal scintillator, photomultiplier tube.

Due to its outstanding energy resolution, high optical yield, simple use and high reliability, it is widely used in industrial detection, radiology, X-ray fluorescence analysis, oil well detection and other fields.

Paramat	ter	Range	Unit
Application Voltage	0~+1250	V	
PMT Diameter	1	Inch	
Applicable to the PMT	STN2013	/	
Effective Size of Scintillator	Ф25×25	mm	
Interface Type	BNC、SHV	/	
Energy Resolution ⁽¹⁾	≤8.5	%	
Work Environment	Temperature	0~+40	°C
	Humidity	≤90%RH	/
Storogo Emironmont	Temperature	-20~+50	°C
Storage Environment	Humidity	≤93%RH	/
Test Ambient Temperature	25 °C		

Note:(1)The output state of the detector is adjusted by using ¹³⁷Cs radioactive source test.

Dimension

Wiring

Wiring Instructions		
Interface Type	SHV Interface	BNC Interface
Interface Definition	+12V Power Supply	Signal Interface

Scintillator Probe – STM3112

The STM3112 scintillator probe is composed of Nal scintillator, photomultiplier tube.

Due to its outstanding energy resolution, high optical yield, simple use and high reliability, it is widely used in industrial detection, radiology, X-ray fluorescence analysis, oil well detection and other fields.

Specification

Paramater		Range	Unit
Application Voltage		0~+1250	V
PMT Diameter		2	Inch
Applicable to the PMT		STN4021	/
Effective Size of Scintillator		Ф50×50	mm
Interface Type		BNC、SHV	/
Energy Resolution ⁽¹⁾		≤8.5	%
Mark Environment		0~+40	°C
	Humidity	≤90%RH	/
Store as Emirerment Temperature		- 20~+50	°C
Humidity		≤93%RH	/
Test Ambient Temperature		25 ℃	

Note:(1)The output state of the detector is adjusted by using ¹³⁷Cs radioactive source test.

Dimension

Wiring

Wiring Instructions		
Interface Type	SHV Interface	BNC Interface
Interface Definition	+12V Power Supply	Signal Interface

Scintillator Probe – STM3113

The STM3113 scintillator probe is composed of Nal scintillator, photomultiplier tube.

Due to its outstanding energy resolution, high optical yield, simple use and high reliability, it is widely used in industrial detection, radiology, X-ray fluorescence analysis, oil well detection and other fields.

Specification

Paramater		Range	Unit
Application Voltage		0~+1250	V
PMT Diameter		3	Inch
Applicable to the PMT		STN2032	/
Effective Size of Scintillator		Ф75×75	mm
Interface Type		BNC、SHV	/
Energy Resolution ⁽¹⁾		≤8.5	%
Work Environment	Temperature	0~+40	°C
	Humidity	≤90%RH	/
Storege Emireement Temperature		- 20~+50	°C
Humidity		≤93%RH	/
Test Ambient Temperature		25 ℃	

Note:(1)The output state of the detector is adjusted by using ¹³⁷Cs radioactive source test.

Dimension

(unit: mm, line length can be customized)

Wiring

Wiring Instructions		
Interface Type	SHV Interface	BNC Interface
Interface Definition	+12V Power Supply	Signal Interface

Nal Scintillator Detector – STM3021

The STM3021 Nal scintillator detector is a highly integrated detector composed of Nal scintillator, photomultiplier tube, high voltage module, preamplifier and so on.

Because of its characteristics of good energy resolution, high light yield, simple use and high reliability, it is widely used in industrial detection, radiation medicine, X-ray fluorescence analysis, oil well detection and other fields.

Specification

Paramater		Range	Unit
Input Voltage		+11.5~+12.5	V
Max.Input Current		50	mA
Effective Size of Scintillator		Ф25×25	mm
Output Signal Polarity		Negative	/
Output Signal Amplitude ⁽¹⁾		1	V
Output Signal Amplitude		6	V
Energy Resolution		≤8.5	%
Morte Environment	Temperature	0~+40	°C
VVOIK ENVIRONMENL	Humidity	≤90%RH	/
Temperature		-20~+50	°C
Storage Environment	Humidity	≤93%RH	/
Test Ambient Temperature		25 °C	

Note: (1)The output state of the detector is adjusted by using ¹³⁷Cs radioactive source test.

Dimension

Wiring

Wiring Instructions		
Interface Type LEMO Power Interface LEMO Signal Interface		LEMO Signal Interface
Interface Definition	+12V Input	Signal Input
Wiring	LEMO Interface Power Cable	LEMO Interface Signal Cable

Note: The potentiometer adjustment interface is used to adjust the internal high voltage, adjust the high voltage clockwise to increase, and adjust the high voltage counterclockwise to decrease.

Nal Scintillator Detector – STM3022

The STM3022 Nal scintillator detector our company is a highly integrated detector composed of Nal scintillator, photomultiplier tube, high voltage module, preamplifier and so on.

Because of its characteristics of good energy resolution, high light yield, simple use and high reliability, it is widely used in industrial detection, radiation medicine, X-ray fluorescence analysis, oil well detection and other fields.

Specification

Paramater		Range	Unit
Input Voltage		+11.5~+12.5	V
Max.Input Current		50	mA
Effective Size of Scintillator		Ф50×50	mm
Output Signal Polarity		Negative	/
Output Signal Amplitude ⁽¹⁾		1	V
Output Signal Amplitude		6	V
Energy Resolution		≤8.5	%
Morte Environment	Temperature	0~+40	°C
WORK Environment	Humidity	≤90%RH	/
Temperature		-20~+50	°C
Humidity		≤93%RH	/
Test Ambient Temperature		25 °C	

Note: (1)The output state of the detector is adjusted by using ¹³⁷Cs radioactive source test.

Dimension

(unit: mm, line length can be customized)

Wiring

Wiring Instructions					
Cable Color	Red Cable	Black Cable	Green Cable	Yellow Cable	Shielding
Wiring Definition	+12V Input	Power Ground	Signal Ground	Signal Output	Grounding

Note: The potentiometer adjustment interface is used to adjust the internal high voltage, adjust the high voltage clockwise to increase, and adjust the high voltage counterclockwise to decrease.

Nal Scintillator Detector – STM3023

The STM3023 Nal scintillator detector is a highly integrated detector composed of Nal scintillator, photomultiplier tube, high voltage module, preamplifier and so on.

Because of its characteristics of good energy resolution, high light yield, simple use and high reliability, it is widely used in industrial detection, radiation medicine, X-ray fluorescence analysis, oil well detection and other fields.

Specification

Paramater		Range	Unit
Input Voltage		+11.5~+12.5	V
Max.Input Current		50	mA
Effective Size of Scintillator		Ф75×75	mm
Output Signal Polarity		Negative	
Output Signal Amplitude ⁽¹⁾		1	V
Output Signal Amplitude		6	V
Energy Resolution		≤8.5	%
Mork Environment	Temperature	0~+40	°C
Work Environment Humidity		≤90%RH	/
Temperature		-20~+50	°C
Storage Environment	Humidity	≤93%RH	/
Test Ambient Temperature	· · ·	25 ℃	

Note: (1)The output state of the detector is adjusted by using ¹³⁷Cs radioactive source test.

Dimension

(unit: mm, line length can be customized)

Wiring

Wiring Instructions		
Interface Type	7-pin Interface	BNC Interface
Interface Definition	+12V Input	Signal Input
Wiring	7-pin Connector Power Cable	BNC Connector Signal Cable

Note: The potentiometer adjustment interface is used to adjust the internal high voltage, adjust the high voltage clockwise to increase, and adjust the high voltage counterclockwise to decrease.

Counting Unit – STM4011

The M4011 counting unit includes counting control circuit and upper computer acquisition software. The counting unit can be used directly in combination with a photon counting detector or scintillation detector as a counter. The counting software has a simple and easy user interface.

Feature

- Count the positive logic TTL level pulses and input them to the computer through RS-232 interface
- · Gating time is adjustable
- Built-in linear correction program (for use with photon counting detectors)
- Serial port baud rate: 19200 (1 bit start bit, 8 bit data bit, 1 bit stop bit, no check bit)

Pa	arameter	Description	
	Input Channel	Channel 1	
loovet	Input Signal Level	3.3VTTL (Compatible with 5VTTL levels)	
Input	Signal Pulse Width	≥10ns	
	Input Impedance	50Ω	
	Count Mode	Gating	
Count	Maximum Counting Rate	5×10 ⁷ S ⁻¹	
	Maximum Counting Value	232	
Gating	Gated Time Range	10~655350ms	
Pulse Resolution Time ⁽¹⁾		0~255ns	
Input Voltage		+11.5~+12.5V	
Interface		RS232	
System		WindowsXP/7/10	
	Temperature	0~+40°C	
Work Environment	Humidity	≤90%RH	
Storage Environment Temperatur Humidity	Temperature	-20~+50°C	
	Humidity	≤93%RH	

Note: (1) The pulse pair resolution time needs to be tested against the matched detector performance.

Specification

Dimension

(unit: mm, line length can be customized)

Wiring

Wiring Instructions				
Interface Type 2-pin Interface		BNC Interface	DB9 Female	
Interface Definition +12V Input		Signal Input	Signal Output	
Wiring	2-pin Connector Power Cable			

Note: The potentiometer adjustment interface is used to adjust the internal high voltage, adjust the high voltage clockwise to increase, and adjust the high voltage counterclockwise to decrease

High Voltage Tube Socket for Side Window – STD317-11

The high voltage tube socket uses $\pm 15V$ voltage input, $50k\Omega$ potentiometer or 0-5V voltage control, easy to use and convenient. The main feature is that the built-in voltage divider adopts active voltage divider design, which can make the photomultiplier tube have high DC output linearity.

This product is suitable for side-on photomultiplier tube, which has the advantages of high linear DC output, wide output voltage range, fast response speed, low ripple noise and so on.

Specification

Paramater	Description	Unit
Suitable Photomultiplier Tube	Side-on PMT	/
Input Voltage	+15±1	V
Input Current ⁽¹⁾	80(Max)	mA
Output Voltage	0~-1250	V
Voltage Control Mode	$0\sim+5V$ or $50K\Omega$ Potentiometers	/
Reference Voltage	5.33	V
The PMT Outputs A Linear Current Value ⁽¹⁾ (-1000V)	180(Тур)	μA
Input Regulation	0.01(Typ)	%
On-off Transient Response Rise Time ⁽²⁾	80(Тур)	ms
Temperature Coefficient	0.03(Typ)	%/°C
Anodic Output Ripple (Peak-to-Peak) ⁽³⁾	2	mV
Operating Temperature	0~+40	°C
Operating Humidity	≤70%	/

Note:

(1) Linear current variation is less than 2%

(2) High voltage change 0~99%

(3) Test bandwidth 20MHz, load resistance $1M\Omega$

Dimension

Wiring

Cable	Voltage Control	Resistance Control	
Red Line	+15V Input	+15V input	
Yellow Line	0~5V Control Voltage	Potentiometer Center Tap	
White Line	Vacant	Potentiometer End	
Black Line	Ground	Ground	
Black Line	Ground	Ground	
Shielded Wire	Signal Output		

High Voltage Tube Socket – STD701A-14

The STD701A-14 high voltage tube socket uses $\pm 15V$ voltage input, $50k\Omega$ potentiometer or 0-6V voltage control, easy to use and convenient.

The main feature is that the built-in voltage divider adopts active voltage divider design, which can make the photomultiplier tube have high DC output linearity. This product is suitable for N2013 photomultiplier tube, which has the advantages of high linear DC output, wide output voltage range, fast response speed, low ripple noise and so on.

Specification

Paramater		Description	Unit	
Suitable Photomultiplier tube		Ф28mm End Window Type	/	
Input Voltage		±15	V	
Input Current ⁽¹⁾ Max.		Max.	VCC: 85, VEE: 20	mA
Amplifier	-3dBbandwidth	Тур.	8	MHz
	Gain	Тур.	0.3 (Load Impedance1 M Ω)	V/µA
	Output Signal Bias	Тур.	10	mV
	Output Signal Noise/Ripple	Max.	10	mV
	Output Pulse Polarity		Positive Polarity	/
	Output Voltage Range		0~-1500	V
High-voltage Power Supply	Oouput Voltage Referenced		5.33	V
	Output Relation		Vo=-250×Vadj	/

Note:

(1) Without PMT

Dimension

(unit: mm, line length can be customized)

Wiring

Cable	Voltage Control	Resistance Control	
Red Line	+15V Input	+15V Input	
Green Line	-15V Input	-15V Input	
Yellow Line	0~6V Control Voltage	Potentiometer Center Tap	
White Line	Vacant	Potentiometer End	
Black Line	Ground	Ground	
Black Line	Ground	d Ground	
Shielded Wire	Si	gnal Output	

High Voltage Power Supply – STD454

STD454 high voltage power supply is a small and compact high voltage module.

It is specially designed for photomultiplier tubes, with stable performance and strong self-protection function.

Specification

Model		STD454-01	STD454-02	Unit
Input Voltage Range		+11.5~+12.5	+11.5~12.5	VDC
Input Current ⁽¹⁾	No-load	16	16	mA(Typ)
Output Voltage Range		0~-1250	0~+1250	VDC
Ensure Output Voltage Range		-200~-1250	200~+1250	VDC
Current Output ⁽²⁾		0.5		mA(Max)
Nput Regulation ⁽²⁾		0.01		%(Max)
Load Regulation ⁽¹⁾		0.01		%(Тур)
Ripple (Peak-To-Peak) ⁽¹⁾		3	30	
Output Stability (8 Hours)		0.	01	%(Тур)
		Applied Control Voltage (0~+5V)		
Output voltage Control Mode		Applied Control Resistor ($50k\Omega \pm 2.5k\Omega$)		
Control Terminal Input Impedance		80		kΩ
Reference Voltage		+5.15(When a 50kΩ po	V (Typ)	
Output Voltage Calculation		(Control Voltag	V(Typ)	
On-Off Transient Response Rise Time2)		250		ms(Max)
Temperature Coefficient (2)		0.01		%/°C (Typ)
Operating Temperature ⁽²⁾		0~+40		°C
Operating Humidity ⁽²⁾		≤85%		/
Storage Temperature		-20~+70		°C
Size Dimension		45.6×25×12.3		mm
Weight		33±1		g
Protect Function		Protection is generated when the input voltage or control voltage is reversed,overloaded, and the output is short-circuited		/

Note:

(1) At the maximum output voltage

(2) At the maximum output voltage and the maximum output current

(3) Test conditions: Load resistance is greater than 2.5MΩ, it should be avoided to use in strong magnetic field and acid-base environment

Output Voltage Control Chart

Note: The above control curves are taken as examples of positive high pressure (the negative high pressure curve is the same as the positive high pressure curve)

Dimension

SIMTRUM China Telephone: +86 150 0085 3620 Email: <u>sales@simtrum.cn</u>

